Hukum Kedua
- "Luas daerah yang disapu pada selang waktu yang sama akan selalu sama."
Secara matematis:
dimana
adalah "areal velocity".
adalah "areal velocity".Hukum Ketiga
Planet yang terletak jauh dari matahari memiliki perioda orbit yang lebih panjang dari planet yang dekat letaknya. Hukum Kepelr ketiga menjabarkan hal tersebut secara kuantitativ.
- "Perioda kuadrat suatu planet berbanding dengan pangkat tiga jarak rata-ratanya dari matahari."
Secara matematis:
dimana P adalah period orbit planet dan a adalah axis semimajor orbitnya.
Konstant proporsionalitasnya adalah semua sama untuk planet yang mengedar matahari.
Bila suatu benda dikenai sebuah gaya dan kemudian gaya tersebut dihilangkan, maka benda akan kembali ke bentuk semula, berarti benda itu adalah benda elastis. Namun pada umumnya benda bila dikenai gaya tidak dapat kembali ke bentuk semula walaupun gaya yang bekerja sudah hilang. Benda seperti ini disebut benda plastis. Contoh benda elastis adalah karet ataupun pegas. Bila pegas ditarik melebihi batasn tertentu maka benda itu tidak akan elastis lagi. Lalu bagaimanakah hubungan pertambahan panjang dengan gaya tarik?
Karena besarnya gaya pemulih sebanding besarnya pertambahan panjang, maka dapat dirumuskan bahwa:
dengan,
k = konstanta pegas
Fp = Gaya Pemulih (N)
x = Perpanjangan Pegas (m)
Persamaan inilah yang disebut dengan Hukum Hooke. Tanda negatif (-) dalam persamaan menunjukkan berarti gaya pemulih berlawanan arah dengan arah perpanjangan.
3. Elastisitas dan Hukum Hooke
Bila suatu benda dikenai sebuah gaya dan kemudian gaya tersebut dihilangkan, maka benda akan kembali ke bentuk semula, berarti benda itu adalah benda elastis. Namun pada umumnya benda bila dikenai gaya tidak dapat kembali ke bentuk semula walaupun gaya yang bekerja sudah hilang. Benda seperti ini disebut benda plastis. Contoh benda elastis adalah karet ataupun pegas. Bila pegas ditarik melebihi batasn tertentu maka benda itu tidak akan elastis lagi. Lalu bagaimanakah hubungan pertambahan panjang dengan gaya tarik?
- Karena besarnya gaya pemulih sebanding besarnya pertambahan panjang, maka dapat dirumuskan bahwa:
Persamaan inilah yang disebut dengan Hukum Hooke. Tanda negatif (-) dalam persamaan menunjukkan berarti gaya pemulih berlawanan arah dengan arah perpanjangan.
dengan,
k = konstanta pegas
Fp = Gaya Pemulih (N)
x = Perpanjangan Pegas (m) - Modulus ElastisitasYang dimaksud dengan Mosdulus Elastisitas adalah perbandingan antara tegangan dan regangan. Modulus ini dapat disebut dengan sebutan Modulus Young.
- Tegangan (Stress)
Tegangan adalah gaya per satuan luas penampang. Satuan tegangan adalah N/m2 Secara matematis dapat dituliskan:
- Regangan (Strain)
Regangan adalah perbandingan antara pertambahan panjang suatu batang terhadap panjang awal mulanya bila batang itu diberi gaya. Secara matematis dapat dituliskan:
Dari kedua persamaan di atas dan pengertian modulus elastisitas, kita dapat mencari persamaan untuk menghitung besarnya modulus elastisitas, yang tidak lain adalah: Satuan untuk modulus elastisitas adalah N/m2
- Tegangan (Stress)
- Gerak Benda di Bawah Pengaruh Gaya PegasBila suatu benda yang digantungkan pada pegas ditarik sejauh x meter dan kemudian dilepas, maka benda akan bergetar. Percepatan getarnya itu dapat dihitung dengan persamaan:
Dari persamaan di atas, kita mengetahui bahwa besarnya percepatan getar (a) sebanding dan berlawanan arah dengan simpangan (x).
Gerak harmonis sederhana yang dapat dijumpai dalam kehidupan sehari-hari adalah getaran benda pada pegas dan getaran benda pada ayunan sederhana. Kita akan mempelajarinya satu persatu.
Gerak Harmonis Sederhana pada Ayunan

Ketika beban digantungkan pada ayunan dan tidak diberikan gaya maka benda akan diam di titik kesetimbangan B. Jika beban ditarik ke titik A dan dilepaskan, maka beban akan bergerak ke B, C, lalu kembali lagi ke A. Gerakan beban akan terjadi berulang secara periodik, dengan kata lain beban pada ayunan di atas melakukan gerak harmonik sederhana
Simpangan, Kecepatan, dan Percepatan GHS
a. Simpangan GHS
- Untuk menghitung besarnya simpangan pada gerak harmonis sederhana digunakan rumus:
Bila besarnya sudut awal (Θ 0) adalah 0 maka persamaan simpangannya menjadi:
atau 

dengan:
y = simpangan (m)
A = amplitudo atau simpangan maksimum (m)
t = waktu getar (s)
w = kecepatan sudut (rad/s)
Simpangan akan bernilai maksimum (ymaks) jika sin wt = 1 sehingga persamaannya menjadi:
- Kecepatan GHSBesarnya kecepatan gerak harmonis dapat dicari dengan persamaan:
Besarnya kecepatan akan mencapai nilai maksimun bila besarnya cos wt = 1, sehingga persamaannya menjadi:

- Percepatan GHSBesarnya percepatan pada gerak harmonis sederhana dapat dihitung dengan rumus:
Dan besarnya percepatan akan mencapai nilai maksimal apabila besarnya sin wt = 1, sehingga:
atau 
Besarnya percepatan bernilai negatif menunjukkan arah percepatan a berlawanan dengan arah perpindahan y (y adalah perpindahan dari titik keseimbangan)
- Beda fase getaran suatu titik dengan selang waktu t= t1 dan t= t2
Persamaan yang dipakai untuk menghitung besarnya beda fase dengan selang waktu dari t1 sampai t2adalah:
- Beda fase dua getaran pada waktu sama
Kita juga dapat menghitung beda fase dua getaran pada waktu yang sama. Misalkan dua getaran masing - masing dengan periode T1 dan T2 maka beda fase keduanya setelah bergetar selama t sekon dapat dicari dengan persamaan:
Dua kedudukan tersebut akan dikatan sefase bila nilai beda fase merupakan bilangan cacah (tanpa pecahan ataupun desimal). Sebaliknya kedudukan akan dikatakan berlawanan fase apabila nilai beda fase berupa bilangan cacah+1/2(dengan pecahan ataupun desimal).
Sudut Fase, Fase, dan Beda Fase GHSBerdasarkan dari persamaan simpangan: Faktor Θ disebut sudut fase, yaitu posisi sudut selama benda bergerak harmonis.
bila diturunkan akan menjadi,
Fase atau tingkat getar adalah sudut fase dibagi dengan sudut tempuh selama satu putaran penuh. Sehingga besarnya fase dapat dihitung dari persamaan: Nilai fase biasanya hanya diambil bilangan pecahannya saja Misalkannya saja besarnya fase getaran adalah 1/4, 11/4, 21/4 maka besarnya fase cukup disebut 1/4 saja karena posisi partikel yang bergetar untuk ketiga fase getar tersebut sama. Bilangan bulat di depan pecahan, menunjukkan banyaknya getaran penuh yang terlewati.
Pembahasan tentang fase dibagi menjadi dua, yaitu:- Superposisi Dua Simpangan Gerak Harmonis yang SegarisJika ada dua persamaan simpangan yang dialami oleh suatu partikel pada saat yang sama, maka simpangan akibat kedua getaran dapat dicaari dengan dua cara, yaitu secara grafis dan secara maematis. Berikut adalah pembahasan mengenai kedua cara tersebut.
- Secara GrafisBerikut adalah gambar Superposisi dua gerak harmonis sederhana,

- Secara MatematisDalam perhitungan secara matematis dua gerak harmonis memiliki simpangannya masing - masing. Untuk mencari simpangan superposisinya maka kedua simpangan itu dijumlahkan (y = y1 + y2) sehingga didapatkan persamaan sebagai berikut:

- Secara Grafis
- Penurunan Rumus Periode (T) dan Frekuensi (f)Dalam pembahasan suba bab ini, kita akan membahasa mengenai Periode (T) dan frekuensi (f). Dalam bahasan ini, akan membahas pula mengenai gaya pemulih. Karena itu, pembahasannya akan dibatasi hanya sampai pada pegas dan ayunan sederhana.
- PegasDalam pegas untuk perhitungan Periodenya digunakan rumus:
sedangkan besarnya frekuensi berbanding terbalik dengan periodenya ( f = 1/T), sehingga didapatkan rumus frekuensi sebagai berikut:
Sedangkan bila konstanta pegas belum diketahui, konstatanya dapat dihitung dengan persamaan:
dengan,
m = massa beban (kg)
k = konstanta pegas (N/m) Bila pegas yang dipakai lebih dari satu, maka untuk mencari konstantanya harus menggunakan konstanta total. Untuk menghitung konstanta total tergantung dari rangkaian pegas itu sendiri. Bila beberapa pegas dirangkai secara seri, maka untuk mencari konstanta totalnya mengunakan rumus:
dengan,
g = gaya gravitasi (9,8 N/kg atau 10 N/kg)
x = perpanjangan pegas (m) Sedangkan untuk pegas yang dirangkai paralel mengunakan rumus:

- Ayunan SederhanaSedangkan dalam ayunan sederhana untuk mencari besarnya Periode digunakan rumus:
Kemudian dalam mencari frekuensi, karena nilai frekuensi berbanding terbalik dengan periode maka didapatkan rumus:
dengan,
l = panjang tali (m)
g = gaya gravitasi bumi (m/s2)
- Pegas



Tidak ada komentar:
Posting Komentar